Câu trả lời đúng nhất: Phương pháp chứng minh hai đường thẳng vuông góc với nhau ta có thể làm theo các cách sau:
+ Gọi u→ và v→ là hai vecto chỉ phương của hai đường thẳng; chứng minh: u→. v→ = 0
⇒ (u→ ; v→) = 90°
+ Dùng định lí Pytago đảo chứng minh hai đường thẳng vuông góc.
+ Nếu a // a’; b // b’ và a ⊥ b thì a' ⊥ b'
Để hiểu rõ hơn về phương pháp chứng minh 2 đường thẳng vuông góc lớp 11 mời các bạn đến với nội dung sau đây
a. Định nghĩa
Hai đường thẳng được gọi là vuông góc với nhau nếu góc giữa chúng bằng 90o.
b. Nhận xét
- Cho hai đường thẳng song song. Nếu một đường thẳng vuông góc với đường thẳng này thì cũng vuông góc với đường thẳng kia.
- Hai đường thẳng vuông góc với nhau có thể cắt nhau hoặc chéo nhau
>>> Xem thêm: Chứng minh đường thẳng vuông góc với mặt phẳng
c) Một số dạng toán thường gặp
Dạng 1: Phương pháp tính góc giữa hai đường thẳng.
Phương pháp 1: Sử dụng định lý hàm số cô sin hoặc tỉ số lượng giác.
Phương pháp 2: Sử dụng công thức tính cô sin góc giữa hai đường thẳng biết hai véc tơ chỉ phương của chúng.
Dạng 2: Phương pháp chứng minh hai đường thẳng vuông góc.
Muốn chứng minh đương thẳng d ⊥ (α) ta có thể dùng môt trong hai cách sau.
Cách 1. Chứng minh d vuông góc với hai đường thẳng a; b cắt nhau trong (α) .
Cách 2. Chứng minh d vuông góc với đường thẳng a mà a vuông góc với (α) .
Cách 3. Chứng minh d vuông góc với (Q) và (Q) // (P).
>>> Xem thêm: Thế nào là hai đường thẳng vuông góc?
Ví dụ 1: Cho hình chóp S. ABC có SA ⊥ (ABC) và tam giác ABC vuông ở B , AH là đường cao của tam giác SAB. Khẳng định nào sau đây sai?
A. SA ⊥ BC
B. AH ⊥ BC
C. AH ⊥ AC
D. AH ⊥ SC
Hướng dẫn giải
Chọn C
Vậy câu C sai.
Ví dụ 2: Cho tứ diện ABCD có AC = a; BD = 3a. Gọi M; N lần lượt là trung điểm của hai đường thẳng AD và BC. Biết AC vuông góc với BD. Tính MN.
Hướng dẫn giải
Gọi P là trung điểm của AB
⇒ PN; PM lần lượt là đường trung bình của tam giác ABC và ABD.
Suy ra
Ta có AC ⊥ BD ⇒ PN ⊥ PM hay tam giác PMN vuông tại P
Do đó
Chọn B
Ví dụ 3: Cho hình lăng trụ tam giác ABC.A'B'C'. Gọi H là trực tâm của tam giác ABC và biết rằng A'H vuông góc với mặt phẳng (ABC). Chứng minh rằng:
a) AA ⊥ BC và AA' ⊥ B'C'.
b) Gọi MM' là giao tuyến của mặt phẳng (AHA') với mặt bên BCC'B', trong đó M ∈ BC và M' ∈ B'C'. Chứng minh rằng tứ giác BCC'B là hình chữ nhật và MM' là đường cao của hình chữ nhật đó.
Lời giải:
a) BC ⊥ AH và BC ⊥ A'H vì A'H ⊥ (ABC)
⇒ BC ⊥ (A'HA) ⇒ BC ⊥ AA'
Và B'C' ⊥ AA' vì BC // B'C'
b) Ta có AA' // BB' // CC' mà BC ⊥ AA' nên tứ giác BCC’B’ là hình chữ nhật. Vì AA' // (BCC'B') nên ta suy ra MM' ⊥ BC và MM' ⊥ B'C' hay MM’ là đường cao của hình chữ nhật BCC’B’.
-----------------------------------
Trên đây Toploigiai đã cùng các bạn trả lời câu hỏi phương pháp chứng minh 2 đường thẳng vuông góc lớp 11 và cung cấp kiến thức về hai đường thẳng vuông góc. Chúng tôi hi vọng các bạn đã có kiến thức hữu ích khi đọc bài viết này, chúc các bạn học tốt!