Hướng dẫn Giải Toán 8 Kết nối tri thức Bài 4: Phép nhân đa thức ngắn gọn kèm lời giải và đáp án chi tiết bám sát nội dung chương trình Sách mới.
Luyện tập 1: Nhân hai đơn thức:
a) 3x2 và 2x3
b) -xy và 4z3
c) 6xy3 và −0,5x2
Lời giải:
a) (3x2)×(2x3) = 6x5
b) (−xy) × (4z3) = −4xyz3
c) (6xy3)×(−0,5x2) = −3x3y3
Hoạt động 1: Hãy nhớ lại quy tắc nhân đơn thức với đa thức trong trường hợp chúng có một biến bằng cách thực hiện phép nhân (5x2)×(3x2 − x − 4)
Lời giải:
Ta có:
(5x2)×(3x2 − x − 4)
= 5x2 × 3x2 − 5x2 × x − 5x2 × 4
= 15x4 − 5x3 − 20x2
Hoạt động 2: Bằng cách tương tự, hãy làm phép nhân (5x2y)×(3x2y − xy − 4y)
Lời giải:
Ta có:
(5x2y)×(3x2y − xy − 4y)
= 5x2y × 3x2y − 5x2y × xy − 5x2y × 4y
= 15x4y2 − 5x3y2 − 20x2y2
Luyện tập 2: Làm tính nhân:
a) (xy).(x2 + xy − y2)
b) (xy + yz + zx).(−xyz)
Lời giải:
a) (xy).(x2 + xy − y2)
= xy.x2 + xy.xy − xy.y2
= x3y + x2y2 − xy3
b) (xy + yz + zx).(−xyz)
= xy.(−xyz) + yz.(−xyz) + zx.(−xyz)
= −x2y2z − xy2z2 − x2yz2
Vận dụng: Rút gọn biểu thức x3(x + y) − x(x3 + y3)
Lời giải:
Ta có:
x3(x + y) − x(x3 + y3)
= x4 + x3y − x4 − xy3
= x3y − xy3
Hoạt động 3: Hãy nhớ lại quy tắc nhân hai đa thức một biến bằng cách thực hiện phép nhân: (2x + 3).(x2 − 5x + 4)
Lời giải:
(2x + 3).(x2 − 5x + 4)
= 2x3 − 10x2 + 8x + 3x2 − 15x + 12
= 2x3 − 7x2 − 7x + 12
Hoạt động 4: Bằng cách tương tự, hãy thử làm phép nhân (2x + 3y).(x2 − 5xy + 4y2)
Lời giải:
(2x + 3y).(x2 − 5xy + 4y2)
= 2x3 − 10x2y + 8xy2 + 3x2y − 15xy2 + 12y3
= 2x3 − 7x2y − 7xy2 + 12y3
Luyện tập 3: Thực hiện phép nhân:
a) (2x + y).(4x2 − 2xy + y2)
b) (x2y2 − 3).(3 + x2y2)
Lời giải:
a) (2x + y).(4x2 − 2xy + y2)
= 8x3 − 4x2y + 2xy2 + 4x2y − 2xy2 + y3
= 8x3 + y3
b) (x2y2 − 3).(3 + x2y2)
= 3x2y2 + x4y4 − 9 − 3x2y2
= x4y4 − 9