logo

Các khái niệm về vectơ (chi tiết, dễ hiểu)

icon_facebook

Tham vấn chuyên môn bài viết

Giáo viên:

Vương Tài Phú

Học vị:

Giáo viên Toán với 4 năm kinh nghiệm

Tham vấn chuyên môn bài viết

Giáo viên:

Vương Tài Phú

Học vị:

Giáo viên Toán với 4 năm kinh nghiệm

Tổng hợp các khái niệm về vectơ cùng với một số bài tập tự luyện đầy đủ hay nhất. Giúp các em có thể nắm vững kiến thức về vectơ. Hãy cùng thầy Phú toploigiai khám phá và tìm hiểu những kiến thức bổ ích qua bài viết chi tiết dưới đây!


1. Định nghĩa vectơ

Cho hai điểm phân biệt A và B gọi là đoạn thẳng AB (có thể gọi là đoạn thẳng BA) không có sự khác nhau về bản chất. (ví dụ: ảnh dưới)

Lý thuyết tích vô hướng của hai vectơ (ảnh 5)

Trong thực tế, với 2 vị trí khác nhau, chúng ta cần chiều đi của nó. 

Ví dụ: chiều Hà Nội vào TP.HCM sẽ khác chiều đi từ TP.HCM ra Hà Nội. Vì vậy, trong toán học, để biểu diễn chiều đi của nó: Chiều đi từ A tới B hoặc từ B tới A, người ta sẽ có khái niệm vectơ ra đời. Cụ thể như sau:

Chiều đi từ A tới B (ví dụ: ảnh dưới)

Lý thuyết tích vô hướng của hai vectơ (ảnh 6)

Ta có vectơ AB, trong đó A là điểm đầu, B là điểm cuối.

Chiều đi từ B tới A (ví dụ: ảnh dưới)

Lý thuyết tích vô hướng của hai vectơ (ảnh 7)

Ta có vecto BA, trong đó B được gọi là điểm đầu, A được gọi là điểm cuối

Như vậy, cho hai điểm phân biệt A và B để biểu diễn chiều đi của đoạn thẳng AB ta sử dụng vectơ AB. 

Lý thuyết tích vô hướng của hai vectơ (ảnh 8)

=> Định nghĩa vectơ: Vectơ là một đoạn thẳng có hướng.

Kí hiệu: Người ta sẽ dùng điểm đầu và điểm cuối của véc tơ để thể hiện vectơ bằng chữ in hoa, ngoài ra có thể sử dụng chữ in thường

Lý thuyết tích vô hướng của hai vectơ (ảnh 9)

2. Hai Vectơ cùng phương

Với đoạn thẳng AB ta sẽ dựng đường thẳng AB, với 2 điểm A và B ta có hai vectơ AB và BA thì ta thấy rằng vectơ AB nằm toàn bộ trên đường thẳng AB thì kho đó ta nói rằng đường thẳng AB là giá của vectơ AB.

Lý thuyết tích vô hướng của hai vectơ (ảnh 11)

=> Giá của vectơ là một đường thẳng chứa vectơ đó.

Cho 2 đường thẳng d1 và d2 song song với nhau, với các điểm A,B,C,D,E,F (như hình) ta xét vectơ AB, vectơ BC, vectơ ED, vectơ EF.

Vectơ AB, vectơ BC có giá là d1 là các vectơ cùng phương với nhau.

Vectơ ED, vectơ EF có giá là d2 là các vectơ cùng phương với nhau.

Lý thuyết tích vô hướng của hai vectơ (ảnh 12)

=> Hai vectơ cùng phương là hai vectơ có giá song song hoặc trùng nhau

Ví dụ: 

Lý thuyết tích vô hướng của hai vectơ (ảnh 13)

3. Vectơ cùng hướng – vectơ bằng nhau

a, Vectơ cùng hướng: Là hai vectơ cùng phương và có chiều giống nhau

Xét hình bình hành ABCD tìm véc tơ cùng phương với vectơ AB được lấy từ 4 điểm ABCD thỏa mãn điểm đầu và điểm cuối khác nhau. 

Lý thuyết tích vô hướng của hai vectơ (ảnh 14)

Ta thấy rằng vectơ AB cùng hướng từ trái sang phải với vectơ DC nên đây là hai vectơ cùng hương với nhau.

Chú ý: Hai vectơ cùng phương thì có thể cùng hướng hoặc ngược hướng.

Từ đó ta có kết luận trong việc chứng minh 3 điểm thẳng hàng. Ta có 3 điểm phân biệt A, B,C để chứng minh 3 điểm này thẳng hàng ta sẽ xét tính cùng phương của vectơ AB và AC hoặc AB và BC. Nếu 2 vectơ này cùng phương thì suy ra 3 điểm A,B,C thẳng hàng và ngược lại.

Lý thuyết tích vô hướng của hai vectơ (ảnh 15)

b, Vectơ bằng nhau: Là hai vectơ cùng hướng và cùng độ dài

Ta có vectơ AB có điểm đầu là A điểm cuối là B thì độ dài vectơ AB chính là độ dài của đoạn thẳng AB. 

Lý thuyết tích vô hướng của hai vectơ (ảnh 16)

Độ dài của vectơ là khoảng cách giữa điểm đầu và điểm cuối của nó.

Xét hình bình hành ABCD ta có AB=DC, AB//DC và cùng hướng với nhau nên vectơ AB bằng vectơ CD. 

Lý thuyết tích vô hướng của hai vectơ (ảnh 17)

Trong mặt phẳng cho trước một vectơ và một điểm cố định bất kì ta sẽ xác định được một  điểm sao cho vectơ có điểm đầu cho trước và vectơ vừa cho là hai vectơ bằng nhau.

Ví dụ: 

Lý thuyết tích vô hướng của hai vectơ (ảnh 18)

4. Vectơ không

Định nghĩa: Là vectơ là vectơ có điểm đầu và điểm cuối trùng nhau

Tính chất:

- Vectơ không cùng phương và cung hướng với mọi vectơ

- Mọi vectơ không đều bằng nhau

- Độ dài của vectơ không luôn luôn bằng không

Lý thuyết tích vô hướng của hai vectơ (ảnh 19)

3. Hai vectơ bằng nhau

- Độ dài đoạn thẳng AB gọi là độ dài véc tơ AB  , kí hiệu AB→  |AB|.

Vậy ∣AB∣=AB |

- Hai vectơ bằng nhau nếu chúng cùng hướng và cùng độ dài.

- Hai vecto đối nhau nếu chúng ngược hướng và cùng độ dài.

Ví dụ: Cho hình bình hành ABDC khi đó:

ABCD vì chúng cùng hướng và cùng độ dài.

AB và DC là hai véc tơ đối nhau vì chúng ngược hướng và cùng độ dài.

[CHUẨN NHẤT] Giá của vectơ là gì? (ảnh 4)

Phản chứng:

Giả sử có điểm MM sao cho MAMB

Khi đó MA,MB cùng hướng và cùng độ dài.

Vì MA,MB cùng hướng nên MM chỉ nằm trên đường thẳng AB và nằm ngoài hai điểm A,B

Như vậy thì chỉ xảy ra MA<MB hoặc MA>MB nên mâu thuẫn với giả thiết cùng độ dài.

Do đó không tồn tại điểm M thỏa mãn MAMB

Tuy nhiên, nếu A,B trùng nhau thì ta lại có vô số điểm M thỏa mãn MAMB


5. Bài tập tự luyện

icon-date
Xuất bản : 28/09/2021 - Cập nhật : 28/12/2024

Câu hỏi thường gặp

Đánh giá độ hữu ích của bài viết

😓 Thất vọng
🙁 Không hữu ích
😐 Bình thường
🙂 Hữu ích
🤩 Rất hữu ích
image ads