Hướng dẫn đáp án bài tập Tìm hệ thức liên hệ giữa x1, x2 không phụ thuộc vào m đầy đủ, chính xác nhất, bám sát kiến thức Toán lớp 9, giúp các em ôn tập tốt hơn.
Câu trả lời chính xác nhất:
Để tìm hệ thức liên hệ giữa x1, x2 không phụ thuộc vào m ta làm như sau:
- B1: Tìm điều kiện để phương trình có 2 nghiệm x1, x2 (∆ ≥ 0)
- B2: Áp dụng định lý Vi-et tìm:
- B3: Biến đổi kết quả không chứa tham số nữa
Để tìm hệ thức liên hệ giữa x1, x2 không phụ thuộc vào m ta làm như sau:
- B1: Tìm điều kiện để phương trình có 2 nghiệm x1, x2 (∆ ≥ 0)
- B2: Áp dụng định lý Vi-et tìm:
- B3: Biến đổi kết quả không chứa tham số nữa
Ví dụ:
Bài 1: Cho phương trình x2 - 2(m - 1)x + m - 3 = 0
a, Tìm m để phương trình có hai nghiệm phân biệt x1, x2
b, Tìm hệ thức liên hệ giữa x1, x2 không phụ thuộc vào m
Hướng dẫn:
+ Điều kiện để phương trình trình bậc hai có hai nghiệm phân biệt x1, x2 là: ∆' > 0
Lời giải:
a, x2 - 2(m - 1)x + m - 3 = 0
∆' = b'2 - ac = (m - 1)2 - (m - 3) = m2 - 3m + 4
với mọi m
Vậy với mọi m thì phương trình có hai nghiệm phân biệt x1, x2
b, Với mọi m phương trình có hai nghiệm phân biệt x1, x2 thỏa mãn hệ thức Vi-ét:
Xét (1) ta có:
Xét (2) ta có: m = x1x2 + 3 (4)
Đồng nhất các vế của (3) và (4) ta được hệ thức giữa hai nghiệm x1; x2 không phụ thuộc vào m:
Câu 1: Cho phương trình x2 + 2(m + 1)x + 2m = 0 (m là tham số). Tìm một hệ thức liên hệ giữa hai nghiệm của phương trình đã cho mà không phụ thuộc vào m.
A. (x1 + x2) + x1x2 = -2
B. 2(x1 + x2) + x1x2 = 0
C. (x1 + x2) + 2x1x2 = -1
D. (x1 + x2) - x1x2 = -2
Đáp án: A
Giải thích:
Vì ∆ꞌ > 0 với mọi m nên phương trình luôn có hai nghiệm x1, x2
Theo hệ thức Vi-et ta có:
Lấy (1) + (2): (x1 + x2) + x1x2 = -2 không phụ thuộc vào m
Câu 2: Cho phương trình 2x2 + (2m – 1)x + m – 1 = 0 (m là tham số). Tìm một hệ thức liên hệ giữa hai nghiệm của phương trình đã cho mà không phụ thuộc vào m.
A. (x1 + x2) - 4x1x2 = -4
B. 2(x1 + x2) + 4x1x2 = 0
C. 2(x1 + x2) + 4x1x2 = -1
D. (x1 + x2) - x1x2 = 2
Đáp án: C
Giải thích:
Vì ∆ ≥ 0 với mọi m nên phương trình luôn có hai nghiệm x1, x2
Theo hệ thức Vi-et ta có:
Lấy (1) + (2): 2(x1 + x2) +4x1x2 = -1 không phụ thuộc vào m
Câu 3: Cho phương trình (m + 2)x2 - (m + 4)x + 2 - m = 0 (m là tham số). Khi phương trình có nghiệm, tìm một hệ thức liên hệ giữa hai nghiệm của phương trình đã cho không phụ thuộc vào m.
A. 3(x1 + x2) - x1x2 = 4
B. (x1 + x2) + 2x1x2 = 0
C. 2(x1 + x2) - x1x2 = 3
D. (x1 + x2) + x1x2 = 2
Đáp án: C
Giải thích:
Giả sử phương trình có hai nghiệm x1, x2
Theo hệ thức Vi-et ta có:
Lấy (1) - (2): 2(x1 + x2) - x1x2 = 3 không phụ thuộc vào m
Câu 4: Cho phương trình x2 - 2(2m + 1)x + 3 – 4m = 0 (m là tham số). Khi phương trình có nghiệm, tìm một hệ thức liên hệ giữa hai nghiệm của phương trình đã cho không phụ thuộc vào m.
A. x1 + x2 - x1x2 = 4
B. x1 + x2 + x1x2 = 5
C. x1 + x2 - x1x2 = 3
D. x1 + x2 + x1x2 = 2
Đáp án: B
Giải thích:
Giả sử phương trình có hai nghiệm x1, x2
Theo hệ thức Vi-et ta có:
Lấy (1) + (2): x1 + x2 + x1x2 = 5 không phụ thuộc vào m
Câu 5: Cho phương trình x2 - 2(m – 1)x + m2 – 3m = 0 (m là tham số). Khi phương trình có nghiệm, tìm một hệ thức liên hệ giữa hai nghiệm của phương trình đã cho mà không phụ thuộc vào m.
A. (x1 + x2)2 - x1x2 - (x1 + x2) = 5
B. (x1 + x2)2 - 2x1x2 - 4(x1 + x2) = 8
C. (x1 + x2)2 - 4x1x2 - 2(x1 + x2) = 6
D. (x1 + x2)2 - 4x1x2 - 2(x1 + x2) = 8
Đáp án: D
Giải thích:
Giả sử phương trình có hai nghiệm x1, x2
Theo hệ thức Vi-et ta có:
Lấy (1) - (2): (x1 + x2)2 - 4x1x2 = 4m + 4(*)
Mặt khác từ: x1 + x2 = 2m - 2 ⇒ 2(x1 + x2) = 4m - 4 ⇒ 2(x1 + x2) + 4 = 4m. Thay vào (*) ta được:
(x1 + x2)2 - 4x1x2 = 2(x1 + x2) + 4 + 4
⇔ (x1 + x2)2 - 4x1x2 - 2(x1 + x2) = 8 không phụ thuộc vào m
----------------------
Hi vọng với những kiến thức của Top lời giải về Tìm hệ thức liên hệ giữa x1, x2 không phụ thuộc vào m sẽ giúp các bạn học tốt và đạt kết quả cao hơn. Chúc các bạn học tốt!