logo

Bài 31 trang 10 sbt Toán 8 tập 2 

icon_facebook

Mục lục nội dung

Bài 4: Phương trình tích

Bài 31 trang 10 sbt Toán 8 tập 2 

Giải các phương trình bằng cách đưa về dạng phương trình tích:

a. (x - √2 ) + 3(x2– 2) = 0

b. x2– 5 = (2x - √5 )(x + √5 )

Lời giải:

Hướng dẫn

Chuyển các hạng tử ở vế phải sang vế trái và phân tích vế trái thành nhân tử bằng phương pháp đặt nhân tử chung và phương tách hạng tử, đưa phương trình đã cho về dạng phương trình tích.
Áp dụng phương pháp giải phương trình tích : A(x).B(x) = 0 ⇔ A(x) = 0 hoặc B(x) = 0.

a. (x - √2 ) + 3(x2– 2) = 0 ⇔ (x - √2 )+ 3(x + √2 )(x - √2 ) = 0

⇔ (x - √2 )[1 + 3(x + √2 )] = 0 ⇔ (x - √2 )(1 + 3x + 3√2 ) = 0

⇔ x - √2 = 0 hoặc 1 + 3x + 3√2 = 0

x - √2 = 0 ⇔ x = √2

1 + 3x + 3√2 = 0 ⇔ x = Giải SBT Toán 8: Bài 4. Phương trình tích - Toploigiai

Vậy phương trình có nghiệm x = √2 hoặc x = Giải SBT Toán 8: Bài 4. Phương trình tích - Toploigiai

b. x2– 5 = (2x - √5 )(x + √5 )

⇔ (x + √5 )(x - √5 ) = (2x - √5 )(x + √5 )

⇔ (x + √5 )(x - √5 ) – (2x - √5 )(x + √5 ) = 0

⇔ (x + √5 )[(x - √5 ) – (2x - √5 )] = 0

⇔ (x + √5 )(- x) = 0 ⇔ x + 5 = 0 hoặc – x = 0

x + √5 = 0 ⇔ x = - √5

x = 0 ⇔ x = 0

Vậy phương trình có nghiệm x = - √5 hoặc x = 0.

Xem toàn bộ Giải SBT Toán 8: Bài 4. Phương trình tích

icon-date
Xuất bản : 04/02/2021 - Cập nhật : 05/02/2021

Câu hỏi thường gặp

Đánh giá độ hữu ích của bài viết

😓 Thất vọng
🙁 Không hữu ích
😐 Bình thường
🙂 Hữu ích
🤩 Rất hữu ích
image ads