logo

Chứng minh hình bình hành có hai cạnh kề bằng nhau là hình thoi?

icon_facebook

Đáp án chi tiết, giải thích dễ hiểu nhất cho câu hỏi: “Chứng minh hình bình hành có hai cạnh kề bằng nhau là hình thoi” cùng với kiến thức tham khảo do Top lời giải biên soạn là tài liệu cực hay và bổ ích giúp các bạn học sinh ôn tập và tích luỹ thêm kiến thức bộ môn Toán 8.


Câu hỏi: Chứng minh dấu hiệu: Hình bình hành có hai cạnh kề bằng nhau là hình thoi?

Trả lời:

Chứng minh hình bình hành có hai cạnh kề bằng nhau là hình thoi?

Ta có: 

Hình bình hành có hai cạnh kề bằng nhau AB=BC (giả thiết)

Mà AB=DC và BC-AD

=>AB=BC=CD=DA

=>ABCD là hình thoi.


Kiến thức mở rộng về hình thoi, cách chứng minh tứ giác là hình thoi


I. ĐỊNH NGHĨA, TÍNH CHẤT CỦA HÌNH THOI

1. Định nghĩa Hình thoi

Chứng minh hình bình hành có hai cạnh kề bằng nhau là hình thoi? (ảnh 2)

Hình thoi là tứ giác có bốn cạnh bằng nhau, là hình bình hành có 2 cạnh liền kề bằng nhau hoặc có đường chéo vuông góc với nhau.

Hình thoi là một hình bình hành đặc biệt.

2. Tính chất Hình thoi

Hình thoi là hình có

+ Các góc đối diện bằng nhau.

+ Hai đường chéo vuông góc với nhau và cắt nhau tại trung điểm của mỗi đường.

+ Hai đường chéo chia các góc ra hình thoi thành 2 góc bằng nhau (đường phân giác).

+ Hình thoi có tất cả tính chất của hình bình hành.

3. Dấu hiệu nhận biết Hình thoi

Hình thoi là hình tứ giác đặc biệt

+ Tứ giác có bốn cạnh bằng nhau là hình thoi.

+ Tứ giác có 2 đường chéo là đường phân giác của cả bốn góc là hình thoi.

+ Tứ giác có 2 đường chéo là đường trung trực của nhau là hình thoi.

Hình thoi là Hình bình hành đặc biệt

Vì hình thoi là một dạng đặc biệt của một hình bình hành nên nó sẽ có đầy đủ tính chất của hình bình hành kèm thêm một số tính chất khác như:

+ Hình bình hành có hai cạnh bên bằng nhau là hình thoi.

+ Hình bình hành có hai đường chéo vuông góc với nhau là hình thoi.

+ Hình bình hành có một đường chéo là đường phân giác của một góc là hình thoi.


II. CÁC CÁCH CHỨNG MINH TỨ GIÁC LÀ HÌNH THOI CỰC HAY

Để chứng minh một tứ giác là hình thoi, các bạn có thể áp dụng một trong những cách sau đây. Cách nào cũng hay, tùy vào từng bài để vận dụng cách chứng minh nhanh nhất nhé !

1. Cách 1: chứng minh tứ giác có 2 đường chéo là đường trung trực của nhau:

Ví dụ: Cho hình bình hành ABCD có AB = AC. Kéo dài trung tuyến AM của ΔABC và lấy ME = MA. Chứng minh tư giác ABEC là hình thoi.

Chứng minh hình bình hành có hai cạnh kề bằng nhau là hình thoi? (ảnh 3)

Theo bài ra, ta có:

ΔABC cân tại A có trung tuyến AM

=> AM đồng thời là đường trung trực của BC

=> Tứ giác ABEC là hình thoi do có 2 đường chéo là đường trung trực của nhau. (đ.p.c.m)

2. Cách 2: chứng minh tứ giác có bốn cạnh bằng nhau

Ví dụ: Chứng minh rằng các trung điểm của bốn cạnh của một hình chữ nhật là các đỉnh của hình thoi.

Chứng minh hình bình hành có hai cạnh kề bằng nhau là hình thoi? (ảnh 4)

Xét tam giác ABD có E và H lần lượt là trung điểm của AB và AD

=> EH là đường trung bình của tam giác

=> EH = 1/2 BD (1)

Chứng minh tương tự ta có: EF = 1/2 AC; FG = 1/2 BD; HG = 1/2 AC (2)

Vì ABCD là hình chữ nhật nên AC = BD (3)

Từ (1), (2) và (3), ta suy ra EH = EF = HG = GF

=> Tứ giác EFGH là hình thoi do có bốn cạnh bằng nhau. (đ.p.c.m)

3. Cách 3: chứng minh tứ giác là hình bình hành có hai đường chéo vuông góc

Ví dụ: Gọi O là giao điểm hai đường chéo của hình bình hành ABCD. Chứng minh rằng giao điểm các đường phân giác trong của các tam giác AOB; BOC; COD và DOA là đỉnh của một hình thoi.

Chứng minh hình bình hành có hai cạnh kề bằng nhau là hình thoi? (ảnh 5)

Gọi M, N, P, Q lần lượt là giao điểm các phân giác trong của các tam giác AOB, BOC, COD và DOA.

Do O là giao điểm hai đường chéo AC và BD của hình bình hành ABCD nên OA = OC và OB = OD.

Xét ΔBMO và ΔDPO có:

Góc B1 = D1 và Góc O1 = O2 ( đối đỉnh ) và OB = OD (gt)

=> ΔBMO = ΔDPO (g. c. g)

=> OM = OP và các điểm M, O, P thẳng hàng (6)

Chứng minh tương tự: ON = OQ và N, O, P thẳng hàng (7)

Từ (6) và (7) Suy ra: Tứ giác MNPQ là hình bình hành do các đường chéo cắt nhau tại trung điểm mỗi đường. (8)

Mặt khác OM, ON là hai đường phân giác của hai góc kề bù nên OM ⊥ ON. (9)

Từ (8) và (9) suy ra: MNPQ là hình thoi do là hình bình hành có hai đường chéo vuông góc. (đ.p.c.m)

4. Cách 4: chứng minh tứ giác là hình bình hành có hai cạnh kề bằng nhau

Ví dụ: Cho tam giác ABC, lấy các điểm D, E theo thứ tự trên các cạnh AB, AC sao cho BD = CE. Gọi M, N, I, K lần lượt là trung điểm của BE, CD, DE, BC. Chứng minh rằng: IMNK là hình thoi.

Chứng minh hình bình hành có hai cạnh kề bằng nhau là hình thoi? (ảnh 6)

Theo giả thiết ta có: M là trung điểm của BE và I là trung điểm của DE

=> MI là đường trung bình của ΔBDE

=> MI // BD và MI = 1/2 BD

Chứng minh tương tự, ta có:

NK // BD và NK= 1/2 BD

Do có MI // NK và MI = NK nên tứ giác MINK là hình bình hành (4)

Chứng minh tương tự, ta có: IN là đường trung bình của ΔCDE

=> IN = 1/2 CE mà CE = BD (gt) => IN = IM (5)

Từ (4) và (5) => Tứ giác MINK là hình thoi do là hình bình hành có hai cạnh kề bằng nhau. (đ.p.c.m)

icon-date
Xuất bản : 02/04/2022 - Cập nhật : 14/06/2022

Câu hỏi thường gặp

Đánh giá độ hữu ích của bài viết

😓 Thất vọng
🙁 Không hữu ích
😐 Bình thường
🙂 Hữu ích
🤩 Rất hữu ích
image ads