Hướng dẫn Cách phá dấu giá trị tuyệt đối hay nhất, chi tiết, bám sát nội dung SGK Toán lớp 10, giúp các em ôn tập tốt hơn.
Để giải phương trình chứa ẩn trong dấu giá trị tuyệt đối(GTTĐ) ta tìm cách để khử dấu giá trị tuyệt đối, bằng cách:
- Bước 1 : Áp dụng định nghĩa giá trị tuyệt đối để loại bỏ dấu giá trị tuyệt đối
- Bước 2: Giải các bất phương trình không có dấu giá trị tuyệt đối
- Bước 3: Chọn nghiệm thích hợp trong từng trường hợp đang xét
- Bước 4 : Kết luận nghiệm
Phương trình dạng |f(x)|=|g(x)| ta có thể giải bằng cách biến đổi tương đương như sau:
hoặc |f(x)| = |g(x)|⇔ f2(x) = g2(x)
- Đối với phương trình dạng |f(x)| = g(x)(*) ta có thể biến đổi tương đương như sau:
Cách giải phương trình: |A(x)|=b (b≥0),
Ví dụ 1. Giải phương trình |x−2|+3x+2=0.
- Phân tích :
- Lời giải :
Ví dụ 2. Giải phương trình |x + 2| + x2 – 3x =1
Lời giải :
Ví dụ 3. Giải phương trình |x−1|+|x−2|=2x−3.
- Phân tích : Đây là bài toán có chứa hai dấu giá trị tuyệt đối nên cần lưu ý các trường hợp sau
+ Nếu x<1 thì x<2 nên |x−1|=−(x−1) và |x−2|=−(x−2).
+ Nếu 1≤x<2 thì |x−1|=x−1 và |x−2|=−(x−2).
+ Nếu x≥2 thì x>1 nên |x−1|=x−1 và |x−2|=x−2.
Từ những phân tích trên ta có lời giải như sau :
- Lời giải :
Cách giải:
Ví dụ. Giải phương trình |x2 – 4x + 3| - |x2 – 3| = 0
- Phân tích : Bài toán có dạng
- Lời giải:
Cách giải 1:
– Bước 1: Lập bảng phá dấu giá trị tuyệt đối
– Bước 2: Giải các phương trình theo các khoảng trong bảng
Ví dụ: Giải phương trình: |x+1|+|x-1|=10
Giải
– Bước 1: Lập bảng phá dấu ||
– Bước 2: Giải các phương trình theo các khoảng
Vậy phương trình có 2 nghiệm x=5 và x=-5
Cách giải 2: Đưa về 4 trường hợp sau
Ví dụ: Giải phương trình: |x+1|+|x-1|=10 (*)
Giải
Bài 1: Bỏ dấu giá trị tuyệt đối và rút gọn các biểu thức sau:
a) A = 3x + 2 + | 5x | với x > 0.
b) A = | 4x | - 2x + 12 với x < 0.
c) A = | x - 4 | - x + 1 với x < 4
Hướng dẫn:
a) Với x > 0 ⇒ | 5x | = 5x
Khi đó ta có: A = 3x + 2 + | 5x | = 3x + 2 + 5x = 8x + 2
Vậy A = 8x + 2.
b) Ta có: x < 0 ⇒ | 4x | = - 4x
Khi đó ta có: A = | 4x | - 2x + 12 = - 4x - 2x + 12 = 12 - 6x
Vậy A = 12 - 6x.
c) Ta có: x < 4 ⇒ | x - 4 | = 4 - x
Khi đó ta có: A = | x - 4 | - x + 1 = 4 - x - x + 1 = 5 - 2x.
Vậy A = 5 - 2x
Bài 2: Giải các phương trình sau:
a) | 2x | = x - 6
b) | - 5x | - 16 = 3x
c) | 4x | = 2x + 12
d) | x + 3 | = 3x - 1
Hướng dẫn:
a) Ta có: | 2x | = x - 6
+ Với x ≥ 0, phương trình tương đương: 2x = x - 6 ⇔ x = - 6.
Không thỏa mãn điều kiện x ≥ 0.
+ Với x < 0, phương trình tương đương: - 2x = x - 6 ⇔ - 3x = - 6 ⇔ x = 2.
Không thỏa mãn điều kiện x < 0.
Vậy phương trình đã cho vô nghiệm.
b) Ta có: | - 5x | - 16 = 3x
+ Với x ≥ 0, phương trình tương đương: 5x - 16 = 3x ⇔ 2x = 16 ⇔ x = 8
Thỏa mãn điều kiện x ≥ 0
+ Với x < 0, phương trình tương đương: - 5x - 16 = 3x ⇔ 8x = - 16 ⇔ x = - 2
Thỏa mãn điều kiện x < 0
Vậy phương trình đã cho có tập nghiệm là S = { - 2;8 }
c) Ta có: | 4x | = 2x + 12
+ Với x ≥ 0, phương trình tương đương: 4x = 2x + 12 ⇔ 2x = 12 ⇔ x = 6
Thỏa mãn điều kiện x ≥ 0
+ Với x < 0, phương trình tương đương: - 4x = 2x + 12 ⇔ - 6x = 12 ⇔ x = - 2
Thỏa mãn điều kiện x < 0
Vậy phương trình đã cho có tập nghiệm là S = {- 2;6}
d) Ta có: | x + 3 | = 3x - 1
+ Với x ≥ - 3, phương trình tương đương: x + 3 = 3x + 1 ⇔ - 2x = - 2 ⇔ x = 1.
Thỏa mãn điều kiện x ≥ - 3
+ Với x < - 3, phương trình tương đương: - x - 3 = 3x + 1 ⇔ - 4x = 4 ⇔ x = - 1
Không thỏa mã điều kiện x < - 3
Vậy phương trình đã cho có tập nghiệm là S = {1}