Tham vấn chuyên môn bài viết
Giáo viên:
Vương Tài Phú
Giáo viên Toán với 4 năm kinh nghiệm
Tham vấn chuyên môn bài viết
Giáo viên:
Vương Tài Phú
Giáo viên Toán với 4 năm kinh nghiệm
Hướng dẫn viết phương trình mặt cầu cùng với Một số dạng toán thường gặp đầy đủ, hay nhất. Giúp các em có thể nắm vững kiến thức về số hữu tỉ. Hãy cùng thầy Phú toploigiai khám phá và tìm hiểu những kiến thức bổ ích qua bài viết chi tiết dưới đây!
Trong không gian Oxyz cho mặt cầu S tâm I(a;b;c) bán kính R. Phương trình chính tắc của (S) là:
(x - a)² + (y - b)² + (z - c)² = R²
Ngoài ra nếu a²+b²+c²-d>0 thì phương trình sau đây là phương trình tổng quát của (S):
x² + y² + z² - 2ax - 2by - 2cz + d = 0 (1)
Tọa độ tâm của (S) có phương trình (1) là I(a;b;c) và bán kính của (S) được tính theo công thức:
Phương pháp:
Sử dụng định nghĩa tâm và bán kính mặt cầu:
- Mặt cầu có phương trình dạng (x−a)2 + (y−b)2 + (z−c)2 = R2 có tâm (a;b;c) và bán kính R.
- Mặt cầu có phương trình dạng x2 + y2 + z2 + 2ax + 2by + 2cz + d = 0 có tâm I(−a;−b;−c)
Phương pháp chung:
* Cách 1: Sử dụng phương trình mặt cầu dạng tổng quát.
- Tìm tâm và bán kính mặt cầu, từ đó viết phương trình theo các dạng vừa nêu ở trên.
* Cách 2: Sử dụng phương trình mặt cầu dạng khai triển.
- Gọi mặt cầu có phương trình x2 + y2 + z2 + 2ax + 2by + 2cz + d = 0
- Sử dụng điều kiện bài cho để tìm a,b,c,da,b,c,d.
Một số bài toán hay gặp:
- Viết phương trình mặt cầu tâm và bán kính đã cho.
- Mặt cầu có đường kính AB: tâm là trung điểm của AB và bán kính
.- Mặt cầu đi qua 44 điểm A, B, C, D:
+) Gọi mặt cầu có phương trình x2 + y2 + z2 + 2ax + 2by + 2cz + d = 0
+) Thay tọa độ các điểm bài cho vào phương trình và tìm a,b,c,d
Có nhiều cách để giải dạng toán này. Trong đó cách làm nhanh hơn là thay tọa độ 4 điểm vào dạng phương trình tổng quát. Sau đó dùng máy tính bỏ túi giải hệ 4 phương trình 4 ẩn.
Ví dụ: Trong không gian Oxyz, cho 4 điểm A(-1;-1;-1), B(1;0;0), C(0;2;0), D(0;0;3). Mặt câ`u (S) đi qua 4 điểm A, B, C, D có phương trình là gì?
Lời giải:
Có duy nhất một mặt cầu tâm I tiếp xúc với đường thẳng d. Bán kính R của mặt cầu này chính là khoảng cách từ I đến d.
Ví dụ:
Trong không gian Oxyz, cho điểm I(2;-1;3). Phương trình mặt cầu tâm I tiếp xúc với trục Oy là gì?
Lời giải:
Bán kính mặt cầu là khoảng cách từ I tới trục Oy: R=|-1|=1.
(Mẹo: Chiếu lên trục nào thì lấy trị tuyệt đối cái đó, ví dụ ở đây chiếu lên trục Oy thì ta chỉ cần lấy trị tuyệt đối của tung độ).
Vậy phương trình mặt cầu tiếp xúc với trục Oy cần tìm là : (x-2)²+(y+1)²+(z-3)²=1
Ví dụ:
Trong không gian Oxyz, mặt cầu (S): 2x²+2y²+2z²-8x+8y-4z=0 có tâm và bán kính lần lượt là
A. I(-2;2;-1), R=3.
B. I(2;-2;1), R=3.
C. I(-2;2;-1), R=9.
D. I(2;-2;1), R=9.
Lời giải:
Trước hết, chúng ta cần kiểm tra hệ số của x², y², z² nếu khác 1 thì cần chia cả 2 vế cho số phù hợp. Ở bài này chúng ta chia cả 2 vế của phương trình cho 2 ta được (S): x²+y²+z²-4x+4y-2z=0.
Tiếp theo để xác định tọa độ tâm mặt cầu chúng ta lấy hệ số của x, y, z chia cho -2 ta được: I(2;-2;1).
Để xác định bán kính mặt cầu ta lấy tổng bình phương các tọa độ của tâm trừ hệ số tự do được kết quả bao nhiêu thì lấy căn bậc 2.
Bán kính mặt cầu là R²=2²+(-2)²+1²-0=9⇒ R=3. Chọn đáp án B.