logo

Luyện tập 3 trang 113 Toán lớp 11 Cánh diều

icon_facebook

Luyện tập 3 trang 113 Toán lớp 11 Cánh diều: Cho hình hộp ABCD.A’B’C’D’. Chứng minh rằng bốn mặt phẳng (ABC’D’), (BCD’A’), (CDA’B’), (DAB’C’) cùng đi qua một điểm.

Lời giải:

Trong mặt phẳng (ABC’D’), xét tứ giác ABC’D’ có:

     AB // C’D’ (cùng song song với DC);

     AB = C’D’ (cùng bằng DC)

Do đó tứ giác ABC’D’ là hình bình hành.

Suy ra hai đường chéo AC’ và BD’ cắt nhau tại trung điểm O của mỗi đường.

Khi đó (ABC’D’) đi qua điểm O.

Tương tự ta cũng có tứ giác BCD’A’ là hình bình hành có hai đường chéo BD’ và CA’ cắt nhau tại trung điểm của mỗi đường.

Mà O là trung điểm của BD’, do đó O là trung điểm của CA’ và (BCD’A’) đi qua O.

Chứng minh tương tự với các mp(CDA’B’), (DAB’C’) thì các mặt phẳng này cũng đi qua điểm O.

Vậy bốn mặt phẳng (ABC’D’), (BCD’A’), (CDA’B’), (DAB’C’) cùng đi qua điểm, điểm O là giao điểm các đường chéo của hình hộp.

icon-date
Xuất bản : 27/02/2024 - Cập nhật : 27/02/2024

Câu hỏi thường gặp

Đánh giá độ hữu ích của bài viết

😓 Thất vọng
🙁 Không hữu ích
😐 Bình thường
🙂 Hữu ích
🤩 Rất hữu ích
image ads