logo

Bài 62 trang 83 SGK Toán 7 tập 2

icon_facebook

Bài 9: Tính chất ba đường cao của tam giác

Bài 62 (trang 83 SGK Toán 7 tập 2)

 Chứng minh rằng một tam giác có hai đường cao (xuất phát từ các đỉnh của hai góc nhọn) bằng nhau thì tam giác đó là tam giác cân. Từ đó suy ra một tam giác có ba đường cao bằng nhau thì tam giác đó là tam giác đều.

Lời giải:

+ Trường hợp 1: Xét ΔABC vuông tại A có các đường cao AD, BA, CA.
Giải Toán 7: Bài 62 trang 83 SGK Toán 7 tập 2 - TopLoigiai

BA, CA là 2 đường cao xuất phát từ 2 góc nhọn B và C của ΔABC.

Ta có AB = AC ⇒ ΔABC cân tại A (đpcm).

+ Trường hợp 2: Xét ΔABC không có góc vuông, 2 đường cao BD = CE (như hình vẽ minh họa)

Giải Toán 7: Bài 62 trang 83 SGK Toán 7 tập 2 - TopLoigiai

Xét 2 tam giác vuông EBC và DCB có :

BC (cạnh chung)

CE = BD (giả thiết)

⇒ ∆EBC = ∆DCB (cạnh huyền - cạnh góc vuông)
Giải Toán 7: Bài 62 trang 83 SGK Toán 7 tập 2 - TopLoigiai

+ Xét ΔABC có 3 đường cao BD = CE = AF (như hình vẽ minh họa)
Giải Toán 7: Bài 62 trang 83 SGK Toán 7 tập 2 - TopLoigiai

CE = BD ⇒ ΔABC cân tại A (như cmt) ⇒ AB = AC.

CE = AF ⇒ ΔABC cân tại B (như cmt) ⇒ AB = BC:

⇒ AB = AC = BC

Vậy ΔABC đều.

Xem toàn bộ Giải Toán 7: Bài 9. Tính chất ba đường cao của tam giác

icon-date
Xuất bản : 04/02/2021 - Cập nhật : 05/02/2021

Câu hỏi thường gặp

Đánh giá độ hữu ích của bài viết

😓 Thất vọng
🙁 Không hữu ích
😐 Bình thường
🙂 Hữu ích
🤩 Rất hữu ích
image ads