logo

Câu hỏi 4 trang 116 Toán 11 Hình học Bài 5

icon_facebook

Mục lục nội dung

Bài 5: Khoảng cách

Câu hỏi 4 trang 116 Toán 11 Hình học Bài 5

Cho hai mặt phẳng (α) và (β). Chứng minh rằng khoảng cách giữa hai mặt phẳng song song (α) và (β) là nhỏ nhất trong các khoảng cách từ một điểm bất kì của mặt phẳng này tới một điểm bất kì của mặt phẳng kia.

Lời giải

Hướng dẫn

- Sử dụng lý thuyết: Khoảng cách giữa hai mặt phẳng song song bằng khoảng cách từ một điểm thuộc mặt phẳng này đến mặt phẳng kia.

- Sử dụng kết quả có được ở Câu hỏi 2 trang 115 SGK Hình Học 11.

Giải Toán 11: Câu hỏi 4 trang 116 Toán 11 Hình học Bài 5 | Giải bài tập Toán 11

Hai mặt phẳng song song (α) và (β) nên có 1 đường thằng a ∈ (α) và a // (β)

⇒ Khoảng cách giữa đường thẳng a và mặt phẳng (β) là bé nhất so với khoảng cách từ một điểm bất kì thuộc a tới một điểm bất kì thuộc mặt phẳng (β).

Vậy khoảng cách giữa hai mặt phẳng song song (α) và (β) là nhỏ nhất trong các khoảng cách từ một điểm bất kì của mặt phẳng này tới một điểm bất kì của mặt phẳng kia.

Xem toàn bộ Giải Toán 11: Bài 5. Khoảng cách

icon-date
Xuất bản : 04/02/2021 - Cập nhật : 05/02/2021

Câu hỏi thường gặp

Đánh giá độ hữu ích của bài viết

😓 Thất vọng
🙁 Không hữu ích
😐 Bình thường
🙂 Hữu ích
🤩 Rất hữu ích
image ads