Bài 6.3 trang 165 sbt Toán 8 tập 1
Bạn Giang đã vẽ một đa giác ABCDEFGHI như ở hình bs. 26.
Tính diện tích của đa giác đó, biết rằng : KH song song với BC (K thuộc EF); BC song song với GF; CF song song với BG; BG vuông góc với GF; CK song song với DE; CD song song với FE; KE = DE và KE vuông góc với DE; I là trung điểm của BH, AI = IH và AI vuông góc với IH; HK = 11cm, CF = 6cm. HK cắt CF tại J và JK = 3 (cm), JF = 2cm. BG cắt HK tại M và HM = 2cm.
Lời giải:
Hướng dẫn
Chia hình đa giác đã cho thành các hình vuông, hình thang và hình tam giác. Áp dụng công thức tính diện tích hình vuông, hình thang và hình tam giác để tính.
Áp dụng công thức
Diện tích hình tam giác bằng nửa tích cạnh và chiều cao tương ứng:
Diện tích hình thang bằng nửa tích hai đáy với chiều cao: Diện tích hình vuông cạnh a bằng a2
Chia đa giác đó thành hình vuông CDEK, hình thang KFGH, hình thang BCKH và tam giác vuông AIB
Ta có: MJ = KH – KJ – MH = 11 – 2 – 3 = 6(cm)
⇒ BC = GF = MJ = 6 (cm)
CJ = CF – FG = 6 – 2 = 4 (cm)
SKFGH = (HK + GF)/2. FJ = (11 + 6)/2.2 = 17 (cm2)
SBCKH = (BC + KH)/2. FJ = (11 + 6)/2.4 = 34 (cm2)
Trong tam giác vuông BMH có ∠J = 90o .Theo định lý Pi-ta-go ta có:
CK2= CJ2 + JK2 = 16 + 9 = 25 ⇒ CK = 5 (cm)
SCDEK = CK2 = 52 = 25 (cm2)
Trong tam giác vuông BMH có ∠M = 90o .Theo định lý Pi-ta-go ta có:
BH2= BM2 + HM2
mà BM = CJ = 4(cm) (đường cao hình thang BCKH)
⇒ BH2 = 42 + 22 = 20
IB = BH/2 ⇒ IB2= BH2/2 = 20/4 = 5
IB = √5 (cm)
ΔAIB vuông cân tại I (vì AI = IH = IB)
SAIB = 1/2 AI. IB = 1/2 IB2 = 5/2 (cm2)
S = SCDEK + SKFGH + SBCKH + SAIB = 25 + 17 + 34 + 5/2 = 157/2 (cm2)
Xem toàn bộ Giải SBT Toán 8: Bài 6. Diện tích đa giác