logo

Bài 25 trang 17 SGK Toán 8 tập 2

icon_facebook

Mục lục nội dung

Luyện tập trang 17

Bài 25 (trang 17 SGK Toán 8 tập 2)

Giải các phương trình:

a) 2x3+ 6x2= x2 + 3x

b) (3x – 1)(x2+ 2) = (3x – 1)(7x – 10).

Lời giải:

a) 2x3+ 6x2= x2 + 3x

⇔ (2x3 + 6x2) – (x2 + 3x) = 0

⇔ 2x2(x + 3) – x(x + 3) = 0

⇔ x(x + 3)(2x – 1) = 0

(Nhân tử chung là x(x + 3))

⇔ x = 0 hoặc x + 3 = 0 hoặc 2x – 1 = 0

+ x + 3 = 0 ⇔ x = -3.

+ 2x – 1 = 0 ⇔ 2x = 1 ⇔ x = 1/2.

Vậy tập nghiệm của phương trình là:

Giải Toán 8: Bài 25 trang 17 SGK Toán 8 tập 2 | Giải bài tập Toán 8

b) (3x – 1)(x2+ 2) = (3x – 1)(7x – 10)

⇔ (3x – 1)(x2 + 2) – (3x – 1)(7x – 10)

⇔ (3x – 1)(x2 + 2 – 7x + 10) = 0

⇔ (3x – 1)(x2 – 7x + 12) = 0

⇔ (3x – 1)(x2 – 4x – 3x + 12) = 0

⇔ (3x – 1)[x(x – 4) – 3(x – 4)] = 0

⇔ (3x – 1)(x – 3)(x – 4) = 0

⇔ 3x – 1 = 0 hoặc x – 3 = 0 hoặc x – 4 = 0

+ 3x – 1 = 0 ⇔ 3x = 1 ⇔ x = 1/3.

+ x – 3 = 0 ⇔ x = 3.

+ x – 4 = 0 ⇔ x = 4.

Vậy phương trình có tập nghiệm là:

Giải Toán 8: Bài 25 trang 17 SGK Toán 8 tập 2 | Giải bài tập Toán 8

Tham khảo toàn bộ: Giải Toán 8

icon-date
Xuất bản : 04/02/2021 - Cập nhật : 05/02/2021

Câu hỏi thường gặp

Đánh giá độ hữu ích của bài viết

😓 Thất vọng
🙁 Không hữu ích
😐 Bình thường
🙂 Hữu ích
🤩 Rất hữu ích
image ads